An algorithm for making magic cubes

Marián Trenkler

Magic squares fascinated people throughout centuries. A magic cube is a generalization of a magic square. Probably the first magic cube appeared in a letter of Pierre de Fermat from 1640.

A magic cube of order n is a cubical array

$$
\begin{equation*}
\mathbf{M}_{n}=\left[\mathbf{m}_{n}(i, j, k) ; 1 \leq i, j, k \leq n\right] \tag{1}
\end{equation*}
$$

containing natural numbers $1,2, \ldots, n^{3}$ such that the sums of the numbers along each row (n-tuple of elements having the same coordinates in two places) and also along each of its four great diagonals are the same, e.i. $\frac{n\left(n^{3}+1\right)}{2}$.

Figure 1 shows the magic cube \mathbf{M}_{3} which was constructed using the formula (1). The element $\mathbf{m}_{3}(1,1,1)=8$ is in three rows containing the triples $\{8,15,19\},\{8,24,10\},\{8,12,22\}$. On the four diagonals there are the triples $\{8,14,20\},\{19,14,9\},\{10,14,18\}$ and $\{6,14,22\}$.

Here we gives an algorithm for making magic cubes of order $n \neq 2$. The proof of the correctness of our formulas follows from [3] and [4]. We use the following notation:

$$
\begin{aligned}
x \quad(\bmod n) & :=\text { the remainder after division of } x \text { by } n \\
\bar{x} & :=n+1-x, \\
x^{*} & :=\min \{x, \bar{x}\} \\
\widetilde{x} & :=\left\{\begin{array}{lll}
0 & \text { for } & 1 \leq x \leq \frac{n}{2} \\
1 & \text { for } & \frac{n}{2}<x \leq n .
\end{array}\right.
\end{aligned}
$$

We construct a magic cube $\mathbf{M}_{n}=\left[\mathbf{m}_{n}(i, j, k)\right]$ of order n using the following three formulas:

1. If $n \equiv 1(\bmod 2)$ then

$$
\mathbf{m}_{n}(i, j, k)=a_{i, j, k} n^{2}+b_{i, j, k} n+c_{i, j, k}+1
$$

with $a_{i, j, k}=(i-j+k-1)(\bmod n), b_{i, j, k}=(i-j-k)(\bmod n), c_{i, j, k}=(i+j+k-2)(\bmod n)$
2. If $n \equiv 0(\bmod 4)$ then

$$
\mathbf{m}_{n}(i, j, k)= \begin{cases}(i-1) n^{2}+(j-1) n+k & \text { if } \mathbb{F}(i, j, k)=1 \\ (\bar{i}-1) n^{2}+(\bar{j}-1) n+\bar{k} & \text { if } \mathbb{F}(i, j, k)=0\end{cases}
$$

Figure 1:
where

$$
\mathbb{F}(i, j, k)=(i+j+k+\widetilde{i}+\widetilde{j}+\widetilde{k}) \quad(\bmod 2)
$$

3. If $n \equiv 2(\bmod 4) \quad\left(\right.$ in this case $t=\frac{n}{2}$ is odd) then

$$
\mathbf{m}_{n}(i, j, k)=\mathbf{d}(u, v) t^{3}+\mathbf{m}_{t}\left(i^{*}, j^{*}, k^{*}\right)
$$

where

$$
\begin{aligned}
& u=\left(i^{*}-j^{*}+k^{*}\right)(\bmod t)+1, \\
& v=4 \widetilde{i}+2 \widetilde{j}+\widetilde{k}+1, \text { and }
\end{aligned}
$$

$$
\mathbf{d}(u, v) \text { for } 1 \leq u \leq t, 1 \leq v \leq 8 \text { is defined by the table }\left(x=1,2, \ldots, \frac{n-6}{4}\right)
$$

	$\mathbf{d}(u, 1)$	$\mathbf{d}(u, 2)$	$\mathbf{d}(u, 3)$	$\mathbf{d}(u, 4)$	$\mathbf{d}(u, 5)$	$\mathbf{d}(u, 6)$	$\mathbf{d}(u, 7)$	$\mathbf{d}(u, 8)$
$\mathbf{d}(1, v)$	7	3	6	2	5	1	4	0
$\mathbf{d}(2, v)$	3	7	2	6	1	5	0	4
$\mathbf{d}(3, v)$	0	1	3	2	5	4	6	7
$\mathbf{d}(2 x+2, v)$	0	1	2	3	4	5	6	7
$\mathbf{d}(2 x+3, v)$	7	6	5	4	3	2	1	0

Using analogous formulas it is easy to make a computer program which constructs a magic square for every $n \neq 2$.

References

[1] W.S.Andrews, Magic Squares and Cubes, Dover, New York, 1960
[2] W.H.Benson, O.Jacoby, Magic cubes, New recreations, Dover, New York, 1981
[3] M.Trenkler, A construction of magic cubes, The Mathematical Gazette, 84, 36-41, March 2000
[4] M.Trenkler, Magic p-dimensional cubes, Acta Arithmetica 96, 361-364, 1998
Address: Catholic University, A.Hlinku 56, 03401 Ružomberok, Slovakia, e-mail: trenkler@fedu.ku.sk
(Published - The ПME Journal, Vol. 12, No. 2, pp. 105-106, Spring 2005)

